Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Type Ia supernovae (SNe Ia) arise from the thermonuclear explosions of white dwarfs in multiple-star systems. A rare subclass of SNe Ia exhibit signatures of interaction with circumstellar material (CSM), allowing for direct constraints on companion material. While most known events show evidence for dense nearby CSM identified via peak-light spectroscopy (as SNe Ia-CSM), targeted late-time searches have revealed a handful of cases exhibiting delayed CSM interaction with detached shells. Here we present the first all-sky search for late CSM interaction in SNe Ia using a new image subtraction pipeline for mid-infrared data from the NEOWISE space telescope. Analyzing a sample of ≈8500 SNe Ia, we report evidence for late-time mid-infrared brightening in five previously overlooked events spanning subtypes SNe Iax, SNe Ia-91T, and super-Chandra SNe Ia. Our systematic search doubles the known sample and suggests that ≳0.05% of SNe Ia exhibit mid-infrared signatures of delayed CSM interaction. The mid-infrared light curves ubiquitously indicate the presence of multiple (or extended) detached CSM shells located at ≳1016–1017cm, containing 10−6to 10−4M⊙of dust, with some sources showing evidence for new dust formation, possibly within the cold, dense shell of the ejecta. We do not detect interaction signatures in spectroscopic and radio follow-up; however, the limits are largely consistent with previously confirmed events given the sensitivity and observation phase. Our results highlight that CSM interaction is more prevalent than previously estimated from optical and ultraviolet searches and that mid-infrared synoptic surveys provide a unique window into this phenomenon.more » « lessFree, publicly-accessible full text available February 17, 2026
-
Abstract We present the results from our extensive hard-to-soft X-ray (NuSTAR, Swift-XRT, XMM-Newton, Chandra) and meter-to-millimeter-wave radio (Giant Metrewave Radio Telescope, Very Large Array, NOEMA) monitoring campaign of the very nearby (d = 6.9 Mpc) Type II supernova (SN) 2023ixf spanning ≈4–165 days post-explosion. This unprecedented data set enables inferences on the explosion’s circumstellar medium (CSM) density and geometry. In particular, we find that the luminous X-ray emission is well modeled by thermal free–free radiation from the forward shock with rapidly decreasing photoelectric absorption with time. The radio spectrum is dominated by synchrotron radiation from the same shock. Similar to the X-rays, the level of free–free absorption affecting the radio spectrum rapidly decreases with time as a consequence of the shock propagation into the dense CSM. While the X-ray and the radio modeling independently support the presence of a dense medium corresponding to an effective mass-loss rate atR = (0.4–14) × 1015cm (forvw = 25 km s−1), our study points at a complex CSM density structure with asymmetries and clumps. The inferred densities are ≈10–100 times those of typical red supergiants, indicating an extreme mass-loss phase of the progenitor in the ≈200 yr preceding core collapse, which leads to the most X-ray luminous Type II SN and the one with the most delayed emergence of radio emission. These results add to the picture of the complex mass-loss history of massive stars on the verge of collapse and demonstrate the need for panchromatic campaigns to fully map their intricate environments.more » « lessFree, publicly-accessible full text available May 14, 2026
-
Abstract We present results from an extensive follow-up campaign of the tidal disruption event (TDE) ASASSN-15oi spanningδt ∼ 10–3000 days, offering an unprecedented window into the multiwavelength properties of a TDE during its first ≈8 yr of evolution. ASASSN-15oi is one of the few TDEs with strong detections at X-ray, optical/UV, and radio wavelengths and it also featured two delayed radio flares atδt ∼ 180 days andδt ∼ 1400 days. Our observations atδt > 1400 days reveal an absence of thermal X-rays, a late-time variability in the nonthermal X-ray emission, and sharp declines in the nonthermal X-ray and radio emission atδt ∼ 2800 days and ∼3000 days, respectively. The UV emission shows no significant evolution atδt > 400 days and remains above the pre-TDE level. We show that a cooling envelope model can explain the thermal emission consistently across all epochs. We also find that a scenario involving episodic ejection of material due to stream–stream collisions can possibly explain the first radio flare. Given the peculiar spectral and temporal evolution of the late-time emission, however, constraining the origins of the second radio flare and the nonthermal X-rays remains challenging. Our study underscores the critical role of long-term, multiwavelength follow-up to fully characterize the extended evolutionary phases of a TDE.more » « lessFree, publicly-accessible full text available April 2, 2026
-
Abstract While the subclass of interacting supernovae (SNe) with narrow hydrogen emission lines (Type IIn supernovae (SNe IIn)) consists of some of the longest-lasting and brightest supernovae (SNe) ever discovered, their progenitors are still not well understood. Investigating SNe IIn as they emit across the electromagnetic spectrum is the most robust way to understand the progenitor evolution before the explosion. This work presents X-ray, optical, infrared, and radio observations of the strongly interacting Type IIn supernova, SN 2020ywx, covering a period >1200 days after discovery. Through multiwavelength modeling, we find that the progenitor of 2020ywx was losing mass at ∼10−2–10−3M⊙yr−1for at least 100 yr pre-explosion using the circumstellar medium (CSM) speed of 120 km s−1measured from optical and near-infrared (NIR) spectra. Despite the similar magnitude of mass loss measured in different wavelength ranges, we find discrepancies between the X-ray and optical/radio-derived mass-loss evolution, which suggest asymmetries in the CSM. Furthermore, we find evidence for dust formation due to the combination of a growing blueshift in optical emission lines and NIR continuum emission which we fit with blackbodies at ∼1000 K. Based on the observed elevated mass loss over more than 100 yr and the configuration of the CSM inferred from the multiwavelength observations, we invoke binary interaction as the most plausible mechanism to explain the overall mass-loss evolution. SN 2020ywx is thus a case that may support the growing observational consensus that SNe IIn mass loss is explained by binary interaction.more » « lessFree, publicly-accessible full text available April 11, 2026
-
Abstract We present the first multiepoch broadband radio and millimeter monitoring of an off-nuclear tidal disruption event (TDE) using the Very Large Array, the Atacama Large Millimeter/submillimeter Array, the Allen Telescope Array, the Arcminute Microkelvin Imager Large Array, and the Submillimeter Array. The off-nuclear TDE AT 2024tvd exhibits double-peaked radio light curves and the fastest-evolving radio emission observed from a TDE to date. With respect to the optical discovery date, the first radio flare rises faster thanFν ∼ t9at Δt = 88–131 days and then decays as fast asFν ∼ t−6. The emergence of a second radio flare is observed at Δt ≈ 194 days with an initial fast rise ofFν ∼ t18and an optically thin decline ofFν ∼ t−12. We interpret these observations in the context of a self-absorbed and free–free absorbed synchrotron spectrum, while accounting for both synchrotron and inverse Compton cooling. We find that a single prompt outflow cannot easily explain these observations and that it is likely that either there is only one outflow that was launched at Δt ∼ 80 days or there are two distinct outflows, with the second launched at Δt ∼ 170–190 days. The nature of these outflows, whether sub-, mildly, or ultrarelativistic, is still unclear, and we explore these different scenarios. Finally, we find a temporal coincidence between the launch time of the first radio-emitting outflow and the onset of a power-law component in the X-ray spectrum, attributed to inverse Compton scattering of thermal photons.more » « lessFree, publicly-accessible full text available October 13, 2026
An official website of the United States government
